师资步队
您如今的地位: 首页>>师资步队>>数学>>注释

张广

2019年06月07日 10:29 

姓名:张广        

职务:无

职称(硕博导师):传授、博导、硕导            

学历:博士       

研讨偏向:微分方程与动力零碎,非线性泛函剖析

 

一、       揭晓的迷信研讨论文:

 

[156] J. J. Li, J. L. Wu and G. Zhang, Estimation of intrinsic growth factors in a class of stochastic population model, Stochastic Analysis and Applications, 2019, DOI: 10.1080/07362994.2019.1605908

[155] L. L. Meng, Y. T. Han, Z. Y. Lv and G. Zhang, Bifurcation, Chaos, and Pattern Formation for the Discrete Predator-Prey Reaction-Diffusion Model, Discrete Dynamics in Nature and Society 2019:1-9, DOI: 10.1155/2019/9592878

[154] X. F. Li, S. W. Ma and G. Zhang, Existence and qualitative properties of solutions for Choquard equations with a local term, Nonlinear Analysis: Real World Applications, 45(2019), 1-25.

[153] 张广,张敏,宋冰洁. 静态价钱下Logistic生长模子的捕捉题目[J]. 经济数学,2018435):39-44.

[152] 张敏,张广. 静态价钱下Gompertz零碎的捕捞题目[J]. 使用数学希望,201877):776-781.

[151] L. Xu, S. S. Lou, P. Q. Xu and G. Zhang, Feedback Control and Parameter Invasion for a Discrete Competitive Lotka–Volterra System, Discrete Dynamics in Nature and Society, Volume 2018, Article ID 7473208, 8 pages, https://doi.org/10.1155/2018/7473208.

[150] L. Xu, J. Y. Liu and G. Zhang, Pattern formation and parameter inversion for a discrete Lotka–Volterra cooperative system, Chaos, Solitons & Fractals, 110(2018), 226-231.

[149] J. M. Guo, S. W. Ma and G. Zhang, Solutions of the autonomous Kirchhoff type equations in RN, Applied Mathematics Letters 82 (2018), 14–17.

[148] L. L. Meng, X. F. Li and G. Zhang, Simple diffusion can support the pitchfork, the flip bifurcations, and the chaos, Communications in Nonlinear Science and Numerical Simulation, Commun Nonlinear Sci Numer Simulat 53 (2017) 202–212.

[147] S. L. Sun, Y. R. Sun, G. Zhang and X. Z. Liu, Dynamical behavior of a stochastic two-species Monod competition chemostat model, Appl. Math. Comput., 298(2017), 153-170.

[146] Y. Q. Du, W. Feng, Y. Wang and G. Zhang, Positive solutions for a nonlinear algebraic system with nonnegative coefficient matrix, Applied Mathematics Letters 64 (2017) 150–155.

[145] Xu L, Zhang G, Cui H (2016) Dependence of Initial Value on Pattern Formation for a Logistic Coupled Map Lattice. PLoS ONE 11(7): e0158591. doi:10.1371/journal.pone.0158591.

[144] Y. Q. Du, G. Zhang and W. Y. Feng, Existence of positive solutions for a class of nonlinear algebraic systems, Mathematical Problems in Engineering, Mathematical Problems in Engineering, Volume 2016, Article ID 6120169, 7 pages, http://dx.doi.org/10.1155/2016/6120169

[143] X. F. Li and G. Zhang, Positive Solutions of a General Discrete Dirichlet Boundary Value Problem, Discrete Dynamics in Nature and Society, Volume 2016, Article ID 7456937, 7 pages,

http://dx.doi.org/10.1155/2016/7456937

[142] M. F. Li, G. Zhang, Z. Y. Lu and L. Zhang, Diffusion-driven instatiblity and patterns of Leslie-Gover competition model, Journal of Biological Systems, Vol. 23, No. 3 (2015) 385–399

[141] X. F. Li and G. Zhang, Existence of time homoclinic solutions for  a class of discrete wave 

equations, Advance in Difference Equations, (2015) 2015:358 DOI 10.1186/s13662-015-0696-z, 1-15.

[140] W. Feng and G. Zhang, New fixed point theorems on order intervals and their applications, Fixed Point Theory and Applications, (2015) 2015:218 DOI 10.1186/s13663-015-0467-2, 1-10.

[139] G. Zhang, W. Feng and Y. B. Yang, Existence of time periodic solutions for a class of non-resonant discrete wave equations, Advance in Difference Equations, (2015) 2015:120, 1-13, DOI 10.1186/s13662-015-0457-z.

[138] G. Zhang and S. Ge, Existence of positive solutions for a class of discrete Dirichlet boundary value problems, Applied Mathematics Letters, 48 (2015) 1-7.

[137] X. F. Li, G. Zhang and Y. Wang, Existence and uniqueness of positive solitons for a second order difference equation, Discrete Dynamics in Nature and Society, Volume 2014, Article ID 503496, 8 pages, http://dx.doi.org/10.1155/2014/503496.

[136] Li Xu, Lianjun Zou, Zhongxiang Chang, Shanshan Lou, Xiangwei Peng, Guang Zhang, Bifurcation in a Discrete Competition System, Discrete Dynamics in Nature and Society,  2014, Article ID 193143, 7 pages.

[135]  Li Li, Guang Zhang, Gui-Quan Sun and Zhi-Jun Wang, Existence of periodic positive solutions for a competitive system with two parameters, Journal of Difference Equations and Applications, 20(3)(2014), 341-353.

[134] 胡杨林,张广一个反映分散盛行病模子的庞大动力学,科技信息,2013-01-15199.

[133] 胡杨林,张广具偶然滞的空间SIR流行症模子的动力学剖析,科技信息,2013-03-15157,

[132] L. Meng, G. ZhangS. Xiao and J. BaoTuring instability for a two dimensional semi-discrete Gray-Scott system, Wseas Transactions on Mathematics, 12(2)(2013), 221-229.

[131] W. Feng and G. Zhang, Eigenvalue and Spectral Intervals for a Nonlinear Algebraic System, Linear Algebra and Its Applications, 439 (2013) 1-20.

[130] L. Xu, L. J. Zhao, Z. X. Chang, J. T. Feng and G. Zhang, Turing instability in a semi-discrete Brusslator model, Modern Physics Letters B, 27(1)(2013), 1350006-1-9.

[129] Meifeng Li, Bo Han, Li Xu, Guang Zhang, Spiral patterns near Turing instability in a discrete reaction diffusion system, Chaos, Solitons & Fractals 49 (2013) 1–6.

[128] Defu Li, G. Zhang, Influence of time delay and diffusion on SIR epidemic model with bilinear incidence rate. Internationnal Journal of Information and Systems Sciences8(4)(2012), 525–532.

[127] 李得福,张广. 带分散的捕食者食饵零碎均衡点的稳固性剖析. 科技信息,2013,(06)124.

[126] Lu Zhang, G. Zhang and Wenying Feng, Turing instability generated from discrete diffusion-migeration systems, Canadian Applied Mathematics Quarterly, 20(2), Summer 2012, 253-269.

[125] F. X. Mai, L. J. Qin and G. Zhang, Turing instability for a semi-discrete Gierer-Meinhardt system, Physica A, 391(2012), 2014-2022.

[124] M. F. Li, G. Zhang, H. F. Li and J. L. Wang, Periodic travelling wave solutions for a coupled map lattice, Wseas Transactions on Mathematics, 11(1)(2012), 64-73.

[123] L. Xu, G. Zhang and J. F. Ren, Turing instability for a two dimensional semi-discrete Oregonator model, Wseas Transactions on Mathematics, 10(6)(2011), 201-209.

[122] Y. T. Han, B. Han, L. Zhang, Li Xu, M. F. Li and G. Zhang, Turing Instability and Wave Patterns for a Symmetric Discrete Competitive Lotka-Volterra System, Wseas Transactions on Mathematics, 10(5)(2011), 181-189.

[121] 李莉,张广,靳祯,团圆捕食零碎正周期解的存在性,中北大学学报(天然迷信版)31201095-99.

[120] 王玲,赵中建,张广,一类多时滞有捕捉的Leslie-Gower型捕食零碎的Hopf分支,华北水利水电学院学报,31(2)(2010)

[119] L. Xu, G. Zhang, B. Han, L. Zhang, M.F. Li, Y.T. Han, Turing instability for a two-dimensional Logistic coupled map lattice, Physics Letters A 374 (2010) 3447–3450.

[118] 常佳佳,张广,具有捕食者互相屠杀项时滞零碎的Hopf分支,数学理论与熟悉,39(12)(2009), 97-102.

[117] 白亮, 张广,团圆热传导方程文稳态解的存在性,青岛理工大学学报,30(3)(2009),

[116] G. Zhang and J. R. Yan, Solutions On An Impulsive Compartmental System, Dynamics of Continuous, Discrete and Impulsive Systems, Series A, 16(2009), 725-735.

[115] G. Q. Sun, G. Zhang, Z. Jin and L. Li, Predator cannibalism can give rise to regular spatial pattern in a predator-prey system, Nonlinear Dynamics, 58(1-2)(2009), 75-84.

[114] G. Zhang, L. Bai, Existence of solutions for a nonlinear algebraic system, Discrete Dynamics in Nature and Society, Volume 2009, Article ID 785068, 28 pages.

[113] X. L. Liu and G. Zhang, Positive and Sign-changing Solutions for Fourth-order BVPs with Parameters, J. Appl. Math. Computing, 31(2009), 177-192.

[112] G. Q. Sun, G. Zhang and Z. Jin, Dynamic behavior of a discrete modified Ricker & Beverton_Holt model, Computers and Mathematics with Applications, 57(8)(2009), 1400-1412.

[111] L. Bai and G. Zhang, Existence of Nontrivial Solutions for A Nonlinear Discrete Elliptic Equation with Periodic Boundary Conditions, Applied Mathematics and Computation, 210(2009), 321-333.

[110] 袁虎廷,王权,张广,关于带周期系数的Bernoulli方程及其较好的团圆模子,山西大同大学学报,24(4)(2008)

[109] 张广, 时宝, 三类非线性代数方程零碎解的存在性, 水师航空工程学院学报, 233(3)(2008), 55-357.

[108] G. Zhang and S. S. Cheng, Nota sobre un sistema compartimentado con retrasos, La Gaceta de la RSME, Vol. 11 (2008), Núm. 4, Págs. 687–692.

[107] G. Zhang, Y. L. Luo and L. Bai, Existence and stability of non-zero steady state solution pairs for discrete neutral networks, ICNC-FSKD2008, Jinan, Shandong, China, Edited by Maozu Guo, Liang Zhao and Lipo Wang, Fourth International Conference on Natural Computation, Vol. 3, 185-189.

[106] W. Han and G. Zhang, Twin positive solutions of a nonlinear m-point boundary value problem for third-order p-Laplacian dynamic equation on time scales. Discrete Dynamics in Nature and Society, Volume 2008 (2008), Article ID 257680, 1-19.

[105] G. Zhang and Z. L. Yang, Positive Solutions of A General Discrete Boundary Value Problem, J. Math. Anal. Appl., 339(2008), 469-481.

[104] G. Zhang and S. Stevic, On the difference equation , J. Appl. Math. Computing, 25(1-2)(2007), 269-282.

[103] W. Y. Feng, G. Zhang and Yikang Chai, Existence of positive solutions for secord order differential equations arising from chemical reactor theory, Discrete and Continuous Dynamical Systems, Supplement 2007, 373-381.

[102] G. Zhang, D. M. Jiang and S. S. Cheng, 3-Periodic Traveling Wave Solutions for a Dynamical Coupled Map Lattice, Nonlinear Dynamics, 50(1-2)(2007), 235-247(SCI, IDSNumber: 203YP).

[101] B. B. Du and G. Zhang, Classification and Existence of Non-oscillatory Solutions for Two-Dimensional Neutral Difference System, Proceedings of the SNPD-2007, 8th ACIS International Conference on Saftware Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, Edited by Wenying Feng and Geng Gao, Volume III, July 30-August 1, 2007, Haier International Training Center, Qingdao, China, pp. 567-572.

[100] G. Zhang and B. Shi, Clever Uses of Matrices for Neutral Delay Difference Systems, Proceedings of the SNPD-2007, 8th ACIS International Conference on Saftware Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, Edited by Wenying Feng and Geng Gao, Volume I, July 30-August 1, 2007, Haier International Training Center, Qingdao, China, pp. 417-421.

[99] Huting Yuan, Guang Zhang and Hongliang Zhao, Existence of Positive Solutions for a Discrete Three-Point Boundary Value ProblemDiscrete Dynamics in Nature and Society, Volume 2007 (2007), Article ID 49293, 1-14.

[98] Limei Zhou, Yue Wu, Liwei Zhang and Guang Zhang, Convergence Analysis of a Differential Equation Approach for Solving Nonlinear Programming Problems, Applied Mathematics and Computation, 184(2)(2007), 789-797.

[97] G. Zhang and W. Feng, On the Number of Positive Solutions of A Nonlinear Algebriac System, Linear Algebra and Its Applications, 422(2-3)(2007), 4040-421.

[96] G. Zhang, Existence of non-zero solutions for a nonlinear system with a parameter, Nonlinear Analysis TMA66(6)(2007), 1410-1416.

[95] H. H. Bin, L. H. Huang and G. Zhang, Convergence and Periodicity of Solutions for a Class of Difference Systems, Advances in Difference Equations, 2006/70461(2006), 1-10.

[94] S. G. Kang, G. Zhang and B. Shi, Existence of three periodic positive solutions for a class of integral equations with parameters, J. Math. Anal. Appl., 323(1)(2006), 654-665.

[93] G. Zhang, Existence of Nontrivial Solutions for Discrete Elliptic Boundary Value Problems, Numerical Methods for Partial Differential Equations, 22(6)(2006), 1479-1488.

[92] 张广, 一类代数方程零碎解的存在性, 青岛理工大学学报, 27(5)(2006), 1-7.

[91] J. L. Wang and G. Zhang, Asymptotic weighted periodicity for delay differential equations, Dynamic Systems and Applications, 15(2006), 479-500.

[90] R. Medina and G. Zhang, Oscillation of A Class of Partial Difference Equations with Oscillatory Coefficients, Far East Math. & Math. Sci., 23(2)(2006), 157-169.

[89] Y. M. Wang and G. Zhang, Existence of nontrivial anti-periodic solutions for nonlinear second order difference equations, Far East J. Math. Sci., 32(2)(2006), 145-155.

[88] M. Migda and G. Zhang, On unstable neutral difference equations with “maxima”, Math. Slovaca, 56(3)(2006),

[87] G. Zhang and S. S. Cheng, Existence of solutions for a nonlinear system with a parameter, J. Math. Anal. Appl., 314(1)(2006), 311-319.

[86] G. Zhang, S. G. Kang and S. S. Cheng, Periodic solutions for a couple pair of delay difference equations, Advances in Difference Equations, 3(2005), 215-226.

[85] G. Zhang and L. J. Zhang, Periodicity and Attractivity of A Nonlinear Higher Order Difference Equation, Appl. Math. Comput., 126(2)(2005), 395-401.

[84] H. L. Zhao, G. Zhang and S. S. Cheng, Exact Traveling Wave Solutions for Discrete Conservation Laws, Portugaliae Mathematica, 62(1)(2005), 89-108.

[83] S. G. Kang and G. Zhang, Existence of Nontrivial Periodic Solutions for First-Order Functional Differential Equations, Applied Mathematics Letters, 18(1)(2005), 101-107.

[82] G. Zhang and S. S. Cheng, On two second order half-linear difference equations, Fasciculi Mathematici (Poland), 35(2005), 163-175.

[81] G. Zhang and M. Migda, Unstable neutral differential equations involving the maximum function, Glasnik Mathematiki (Poland), 40(60)(2005), 249-259.

[80] L. J. Zhang, G. Zhang and H. Liu, Periodicity and attractivity of a nonlinear higher order difference equation, Applied Mathematics & Computing, 19(1-2)(2005), 191-201.

[79] G. Zhang and J. R. Yan, Existence and Nonexistence of Eventually Positive Solutions for Nonlinear Neutral Differential Equations, Appl. Math. Comput.,156(3)(2004), 653-664.

[78] G. Zhang and M. Migda, Monotone Solutions of a Higher-Order Neutral Differential Equation, Commentationes Mathematicae, XLIV(1)(2004), 147-162.

[77] M. Migda and G. Zhang, Monotone solutions of neutral difference equations of odd order, J. Difference Equations & Applications, 10(7)(2004), 691-703.

[76] G. Zhang and Z. L. Yang, Existence of $2^{n}$ Nontrivial Solutions for Discrete Two-Point Boundary Value Problems, Nonlinear Analysis TMA, 59(7)(2004), 1181-1187.

[75] X. L. Liu, G. Zhang and S. S. Cheng, Existence of Three Positive Periodic Solutions for Non-Autonomous Functional Differential Equations, Abstract Anal. Appl., 9(10)(2004), 897-905.

[74] G. Zhang and S. S. Cheng, Positive Periodic Solutions of Coupled Delay Differential Systems depending on Two Parameters, Taiwanese Math. J., 8(4)(2004), 639-652.

[73] G. Zhang and R. Medina, Three-point boundary value problems for difference equations, Computers &  Mathematics with Applications, 48(12)(2004), 1791-1799.

[72] M. I. Gil, S. G. Kang and G. Zhang, Positive periodic solutions of abstract difference equations, Applied Math. E-Notes, 4(2004), 54-58.

[71] 高英,张广,葛渭高,时滞差分方程周期正解的存在性,零碎迷信与数学,33(2)(2003), 155-162.

[70] Y. Gao and G. Zhang, Eventually positive solutions for neutral -differential equations, Far East J. Math. Sciences, 8(2)(2003), 121-130.

[69] S. G. Kang and G. Zhang, Existence of positive periodic solutions for a class of integral equations , Far East J. Math. Sciences, 9(2)(2003), 121-128.

[68] G. Zhang and S. S. Cheng, Positive periodic solutions for discrete population models, Nonlinear Funct. Anal. & Appl., 8(3)(2003), 335-344

[67] S. G. Kang, G. Zhang and S. S. Cheng, Periodic Solutions of a Class of Integral Equations, Topological Methods in Nonlinear Analysis, 22(2)(2003), 245-252.

[66] G. Zhang and S. S. Cheng, Eventually positive solutions of nonlinear neutral difference equations, Intern. Math. Journal, 2(2)(2002), 265-278.

[65] G. Zhang, Oscillation for nonlinear neutral difference equations, Applied Math. E-Notes, 2(2002), 22-24.

[64] Y. P. Guo, Y. Gao and G. Zhang, Existence of positive solutions for singular second order boundary value problems, Applied Math. N-Notes, 2(2002), 125-131.

[63] G. Zhang and S. S. Cheng, Positive periodic solutions of non-autonomous functional differential equations depending on a parameter, Abstract Anal. Appl., 7(5)(2002), 279-286.

[62] 张广,陈慧琴,含最大中立型差分方程非振动解的渐近性,雁北师范学院学报,182002),1-6.

[61] G. Zhang, Bifurcation and periodic positive solutions of nonautonomous functional differential systems, Research Report, AMSS-V-2001-061.

[60] G. Zhang, Bifurcation for delay difference equations, Research Report, AMSS-V-062.

[59] S. S. Cheng and G. Zhang, Existence of positive periodic solutions for non-autonomous functional differential equations, Electronic J. Diff. Eqs., Vol. 2001(2001), No. 59, 1-8.

[58] Y. Gao and G. Zhang, Oscillation of first order neutral difference equation, Applied Math. E-Notes, 1(2001), 5-10.

[57] S. S. Cheng, Y. Z. Lin and G. Zhang, Traveling waves of a discrete conservation law, PanAmer. Math. J., 11(1)(2001), 45-52.

[56] B. G. Zhang and G. Zhang, Nonoscillations of second order neutral differential equations of maxima, Communication in Applied Analysis, 4(1)(2000), 31-38.

[55] L. Q. Mao and G. Zhang, Nonoscillation criteria of nonlinear second order differential equations, Proceedings of International Conference Advanced Problems in Vibration Theory and Applications, June 19-22, 2000, Xi’an, China, Edited by: J. H. Zhang and X. N. Zhang, 531-534.

[54] S. S. Cheng and G. Zhang, “Virus” in several discrete oscillation theorems, Appl. Math. Lett., 13(2000), 9-13.

[53] G. Zhang and H. Q. Chen, Nonexistence and existence criteria of eventually positive solutions for a class of nonlinear neutral difference equations, Nonlinear Sdudies, 7(2)(2000), 251-258.

[52] S. S. Cheng and G. Zhang, Existence criteria for positive solutions of a nonlinear difference equality, Ann. Polonici Math., LXXIII3(2000), 197-220.

[51] G. Zhang, Eventually positive solutions of odd order neutral differential equations, Appl. Math. Lett., 13(2000), 55-61.

[50] R. Y. He and G. Zhang, The dual characteristics of LK-UR and K-SS space, Far East J. Math., 2(5)(2000), 731-737.

[49] S. S. Cheng and G. Zhang, Positive periodic solutions of a discrete population model, Functional Differential Equations, 7(3-4)(2000), 223-230.

[48] 张广,高英,高阶非线性差分方程的正解,零碎迷信与数学,19(2)(1999), 157-161.

[47] 张广,高阶中立型微分方程的周期解,数学研讨与谈论,19()(1999), 287-290.

[46] 米芳, 高英,张广,中立型时滞微分方程终极正解的存在性和不存在性,雁北师院学报,15(3)(1999), 5-8.

[45] G. Zhang, W. T. Li and S. S. Cheng, Necessary and sufficient conditions for oscillation of delay difference equations with continuous arguments, Far East J. Math. & Sciences, 7(4)(1999), 643-648.

[44] G. Zhang and S. S. Cheng, Asymptotic dichotomy for nonoscillatory solutions of a nonlinear difference equation, Appl. Math., 25(4)(1999), 393-399.

[43] W. T. Li, S. S. Cheng and G. Zhang, A classification scheme for nonoscillatory solutions of a higher order neutral nonlinear difference equation, J. Austral. Math. Soc., (Series A) 66(1999), 1-12.

[42] B. G. Zhang and G. Zhang, Qualitative properties of functional differential equations with “Maxima”, Rocky Mountain Math. J., 29(1)(1999), 357-367.

[41] S. S. Cheng, G. Zhang and M. Dehghan, Growth conditions for a two level disrete heat equation, Proceedings of the Seventh Workshop on Differential Equations and its Applications, National Chung-Hsing University, Taiwan, 1999, 56-62.

[40] G. Zhang and S. S. Cheng, On connected half-linear differential equations, Demonstratio Mathematica, 32(2)(1999), 345-354.

[39] G. Zhang and S. S. Cheng, Note on a discrete Emden-Fowler equation, PanAmerican J. Math. 9(3)(1999), 57-64.

[38] S. S. Cheng, G. Zhang and S. T. Liu, Stability of oscillatory solutions of difference equations with delays, Taiwanese J. Math., 3(4)(1999), 503-515.

[37] S. S. Cheng, S. T. Liu and G. Zhang, A multivariate oscillation theorem, Fasciculi Math., 30(1999), 15-22.

[36] S. S. Cheng, G. Zhang and W. T. Li, On a higher order neutral difference equation, Mathematical Analysis and Applications (ed. Th. M. Rassias), Hadronic Press, Inc., Palm Harbor, Florida, 1999, pp. 37-64.

[35] G. Zhang and S. S. Cheng, A necessary and sufficient oscillation condition for the discrete Euler equation, PanAmerican J. Math., 9(4)(1999), 29-34.

[34] G. Zhang and S. S. Cheng, Asymptotic stability of nonoscillatory solutions of nonlinear neutral differential equations involving the maximum function, International J. Applied Math., 1(7)(1999), 771-779.

[33] G. Zhang , S. S. Cheng and Y. Gao, Classification schemes for positive solutions of a second order nonlinear difference equation, J. Comp. Appl. Math., 101(1999), 39-51.

[32] S. S. Cheng and G. Zhang, Monotone solutions of a higher order neutral difference equation, Georgian Math. J., 5(1998), 49-54.

[31] G. Zhang, Nonexistence of positive solutions of partial difference equation with continuons arguments, Far East J. Math. Sciences, 6(1)(1998), 89-92.

[30] 高英、张广,一类非线性中立型微分方程的振动性,山西省数学会1998年学术年会论文集,山西教诲出书社,1998pp41-44

[29] B. G. Zhang and G. Zhang, Oscillation of nonlinear difference equations of neutral type, Dynamic Systems and Applications, 7(1)(1998), 85-92.

[28] 高英,张广,二阶中立型差分方程非振动解的渐近性,微分方程实际和使用,南海出书公司,1998pp21-25

[27] 高英,张广,二阶中立型时滞微分方程非振动解的渐近性,华北工学院,19(2)(1998), 108-111.

[26] G. Zhang and S. S. Cheng, Elementary oscillation criteria for a three term recurrence with oscillatroy coefficient sequence , Tamkang J. Math., 29(3)(1998), 227-232.

[25] 张广,一类泛函微分方程和差分方程的振动性,大同高专学报,12(3)(1998),97-100.

[24] 张广,高英,中立型时滞微分方程终极正解的存在性和不存在性,非线性动力学学报,5(增下)(1998),334-335.

[23] 张广,一个料想的证实, 华北初等职业教诲, 11(6)(1998), 17.

[22] G. Zhang and S. S. Cheng, Positive solutions of a nonlinear neutral difference equation, Nonlinear Anal.-TMA, 28(4)(1997), 729-738. SCI收录)(EI收录)

[21] 张广,明亚东,具误差变元非线性双曲方程的逼迫振动,山西大学学报, 20(1)(1997), 28-31.

[20] 高英,张广,具有正负系数中立型时滞微分方程的振动性,工程数学学报, 14(4)(1997), 8-12.

[19] G. Zhang and S. S. Cheng, Note on a functional equation related to the Emden-Fowler equation, Functional Differential Equations, 4(1-2)(1997), 215-221.

[18] S. L. Xie, G. Zhang and S. S. Cheng. Nonexistence of positive solutions of neutral difference equations, Diff. Eq. & Dynamic Systems, 5(1)(1997), 1-11.

[17] G. Zhang and S. S. Cheng, Elementary nonexistence criteria for a recurrence relation, Chinese J. Math., 24(3)(1996), 229-235.

[16] 高英,张广,一类非线性中立型微分方程振动的充实需要条件,山西师大学报,10(2)(1996), 16-19.

[15] W. T. Li and G. Zhang, Oscillation in nonlinear second order differential equations involving integral avereges, J. Gansu Sciences, 8(2)(1996), 21-25.

[14] 张广,高英,非线性二阶差分方程的渐近分类,天下常微分方程稳固性集会(大连海事出书社),大连,1996, pp360-362.

[13] 张广,明亚东,关于振动定理的一点注记,华北初等职业教诲, 2(1995

[12] G. Zhang and S. S. Cheng, Oscillation criteria for a neutral difference equation with delay, Appl. Math. Lett., 8(3)(1995), 13-17.

[11] S. S. Cheng and G. Zhang, Nonexistence criteria for positive solutions of a nonlinear recurrence relation, Mathl. Comput. Modelling, 22(2)(1995), 59-66.

[10] S, S. Cheng and G. Zhang, Forced oscillation of a nonlinear recurrence relation, 古代数学与力学(MMM-VI), 苏州, 1995.11, 673-676.

[9] 张广,王幼斌,具积分小系数一阶中立型微分方程的振动性,太原重型机器学院, 4(1995), 366-368.

[8] 张广,一类非线性摄动微分方程的振荡定理,山西经济治理学院学报,1995(), 67-70.

[7] 张广, 高阶非线性泛函微分方程的振动性,大同高专学报, 3(1994), 76-77.

[6] 张广, 一类非线性摄动微分方程的振荡定理,云中大学学报,14(2)(1993), 90-95.

[5] 张广, 高阶非线性中立型多滞量泛函微分方程的振动性,云中大学学报,14(3)(1993), 55-59.

[4] 张广, 关于振动定理的一点注记,雁北师院学报,2(1993), 28-29.

[3] 张广, 某类非线性摄动微分方程的振荡定理,山西师大学报,7(1)(1993), 13-18.

[2] 张广, 一类非线性摄动微分方程的振荡定理,云中大学学报,13(1992),76-79.

[1] 张广, 一类非线性微分方程的振荡定理, 华北初等职业教诲,19(1992), 53-55.

 

二、揭晓的讲授研讨论文:

 

[20] Y. Q. Du, G. Zhang and W. Y. Feng, Existence of positive solutions for a class of nonlinear algebraic systems, Mathematical Problems in Engineering, Mathematical Problems in Engineering, Volume 2016, Article ID 6120169, 7 pages, http://dx.doi.org/10.1155/2016/6120169

[19] X. F. Li and G. Zhang, Positive Solutions of a General Discrete Dirichlet Boundary Value Problem, Discrete Dynamics in Nature and Society, Volume 2016, Article ID 7456937, 7 pages,

http://dx.doi.org/10.1155/2016/7456937

[18] G. Zhang, W. Feng and Y. B. Yang, Existence of time periodic solutions for a class of non-resonant discrete wave equations, Advance in Difference Equations, (2015) 2015:120, 1-13, DOI 10.1186/s13662-015-0457-z.

[17] G. Zhang and S. Ge, Existence of positive solutions for a class of discrete Dirichlet boundary value problems, Applied Mathematics Letters, 48 (2015) 1-7.

[16] X. F. Li, G. Zhang and Y. Wang, Existence and uniqueness of positive solitons for a second order difference equation, Discrete Dynamics in Nature and Society, Volume 2014, Article ID 503496, 8 pages, http://dx.doi.org/10.1155/2014/503496.

[15] G. Zhang, L. Bai, Existence of solutions for a nonlinear algebraic system, Discrete Dynamics in Nature and Society, Volume 2009, Article ID 785068, 28 pages.

[14] L. Bai and G. Zhang, Existence of Nontrivial Solutions for A Nonlinear Discrete Elliptic Equation with Periodic Boundary Conditions, Applied Mathematics and Computation, 210(2009), 321-333.

[13] 袁虎廷,王权,张广,关于带周期系数的Bernoulli方程及其较好的团圆模子,山西大同大学学报,24(4)(2008)

[12] 张广, 时宝, 三类非线性代数方程零碎解的存在性, 水师航空工程学院学报, 233(3)(2008), 55-357.

[11] G. Zhang and S. Stevic, On the difference equation , J. Appl. Math. Computing, 25(1-2)(2007), 269-282.

[10] G. Zhang and W. Feng, On the Number of Positive Solutions of A Nonlinear Algebriac System, Linear Algebra and Its Applications, 422(2-3)(2007), 4040-421.

[9] G. Zhang, Existence of non-zero solutions for a nonlinear system with a parameter, Nonlinear Analysis TMA66(6)(2007), 1410-1416.

[8] H. H. Bin, L. H. Huang and G. Zhang, Convergence and Periodicity of Solutions for a Class of Difference Systems, Advances in Difference Equations, 2006/70461(2006), 1-10.

[7] G. Zhang, Existence of Nontrivial Solutions for Discrete Elliptic Boundary Value Problems, Numerical Methods for Partial Differential Equations, 22(6)(2006), 1479-1488.

[6] 张广, 一类代数方程零碎解的存在性, 青岛理工大学学报, 27(5)(2006), 1-7.

[5] Y. M. Wang and G. Zhang, Existence of nontrivial anti-periodic solutions for nonlinear second order difference equations, Far East J. Math. Sci., 32(2)(2006), 145-155.

[4] M. Migda and G. Zhang, On unstable neutral difference equations with “maxima”, Math. Slovaca, 56(3)(2006),

[3] G. Zhang and S. S. Cheng, Existence of solutions for a nonlinear system with a parameter, J. Math. Anal. Appl., 314(1)(2006), 311-319.

[2] 王维平,张广, 分析一习题所得的几个命题,云中大学学报,13(1992), 88-89.

[1] 张广,  的引深,华北初等职业教诲,13(1991), 57-58.

 

三、出书的著作或课本:

 

[3] 张广等,误差分方程及其使用,迷信出书社,北京,2018.

[2] 张广、高英, 《差分方程的振动实际》, 初等教诲出书社, 200112.

[1] 张广等,线性代数方式概论,西北大学出书社,1992.

 

四、掌管或加入的迷信研讨项目:

 

[4] 掌管在研,周期界限时空团圆反映分散零碎的动力学剖析,国度天然迷信基金面上项目;课题编号:11371277;请求代码:A010701;赞助时限:201411—20171231.

[3] 掌管一类控制模子的定性剖析,山西省天然基金赞助,课题编号2000100120011-200312.

[2] 第二介入一类泛函微分方程的振动实际,山西省高科技开辟项目,课题编号200013820021-200412

[1] 次要介入者,误差分方程的定性剖析智利国度天然基金国际互助项目,课题卖力人Universidad de Los LagosR. Medina传授,介入者:郑穗生和张广,赞助金额10US¥,工夫:2000-2003

 

五、掌管或加入的讲授研讨项目:

 

[1] 掌管在研,通俗高校根底类学科专业人才分类培育的探究与理论----以天津贸易大学数学类专业为例,天津贸易大学,2015.6-2017.6.

 

六、获奖情形:

 

[6] 第一完成人一类控制模子的定性剖析获山西省科技提高二等奖,2003.

[5] 第一完成人一类控制模子的定性剖析获山西省教委科技提高一等奖,2002.

[4] 第一完成人一类差分方程的正解获山西省优异论文一等奖,2002.

[3] 第二完成人一类泛函微分方程和差分方程的振动性获山西省优异论文三等奖,2002.

[2] 第一完成人一类泛函微分方程和差分方程的振动性获山西省科技提高三等奖,1999.

[1] 第一完成人一类泛函微分方程和差分方程的振动性获大同市科技提高一等奖,1998.

 

七、取得声誉称呼情形:

 

[6] 山西省五一休息奖章二等奖,1999.

[5] 大同市优异党员,1998.

[4] 山西省榜样西席,1998.

[3] 大同市十大卓越青年提名奖,1997.

[2] 大同市青年科技斥候,1995.

[1] 大同市教诲零碎优异西席,1986.

上一条:耿峤峙
下一条:程伟

封闭